PI06464-P I/0 控制卡

使用手册

深圳锐特控制技术有限公司 手册版本

版本号	修改日期
V1. 0	2023/07/04
V1.1	2023/07/15

版权申明

深圳市锐特控制技术有限公司 保留所有权力

本手册版权归深圳市锐特控制技术有限公司所有,未经公司书面许可, 任何人不得翻印、翻译和抄袭本手册中的任何内容。

深圳锐特控制技术有限公司不承担由于使用本手册或本产品不当,所造 成直接的、间接的、特殊的、附带的或相应产生的损失或责任。

本手册中的信息资料仅供参考。深圳市锐特控制技术有限公司保留对本 资料的最终解释权,内容如有更改,恕不另行通知。

联系我们

深圳市锐特控制技术有限公司

地址: 深圳市宝安区固戍南昌路庄边工业园

B 栋 3 楼

电话: +86 (0)755 29503086

传真: +86 (0)755 23327086

邮箱: <u>sales@szruitech.com</u>

山东办事处

地址:山东省济南市槐荫区西进时代中心

D 座六层 621

联系人: 鹿先生

电话:13854109911

邮箱: <u>sales06@szruitech.com</u>

华东办事处

- 地址: 江苏省昆山市人民南路 888<号汇杰商务大厦 604 室联系人: 唐女士
- **状示八:** 唐女王
- 电话: 15202122728
- 邮箱: <u>sales03@szruitech.com</u>

网址: www.szruitech.com

第1	章 前言5
1.	1 主要目的 5
1.	2 主要内容5
1.	3 服务范围5
1.	4 安全注意事项5
1.	5 保修范围6
第2章	产品介绍7
2.	1 产品简介7
2.	2 型号说明 7
第3 章	硬件连接8
3.	1 硬件指标8
3.	2 输入信号8
3.	3 输出信号8
3.	4 各接口及引脚定义10
3.	5 拨码开关设置15
3.	6 硬件安装16
第4章	驱动程序安装17
4.	1 Windows10
4.	2 Windows7
第5章	软件调试 27
5.	
	1 概述
5.	1 概述
5. 5.	1 概述
5. 5. 第6章	1 概述
5. 5. 第 6 章 6.	1 概述
5. 5. 第 6 章 6. 6.	1 概述
5. 5. 第6章 6. 第7章	1 概述

第1章 前言

感谢您购买锐特技术 PIO6464-P I/O 控制卡产品并阅读本使用手册。关于本 手册有以下内容请知悉:

1.1 主要目的

通过阅读本手册,了解锐特技术 PI06464-P I/0 控制卡的基本信息,完成 卡的安装与基本测试,学会卡相关软件函数的调用,参数设置,硬件接线等。

1.2 主要内容

使用手册主要包含锐特技术 PI06464-P I/0 控制卡的产品信息,安装连接, 软件调试与函数说明等内容。

1.3 服务范围

购买本产品, 锐特技术为您提供以下服务:

- 指导安装调试与试运行
- 指导保养维护
- 故障的维修与技术支持

1.4 安全注意事项

请熟读使用说明书以安全、正确地使用本产品。

运动中的设备有危险!使用者应确保在机器设计中有安全保护机制与有效的 故障处理。如果没有执行必要的安全措施操作或者错误操作时,不仅会引起本产 品的故障和损伤,有可能还会造成使用者(包括且不限于安装、操作、检查者等) 受伤、死亡和重大事故。

1.5 保修范围

本产品保修期限为由本公司出厂后 18 个月。

在保修期限内,正常使用下而发生的故障,由本公司负责免费维修,但不包括以下事项:

- •地震,火山,洪水,风暴,雷电,火灾或其他天灾与人祸造成的损害。
- 使用者不当的安装或使用。
- •未经本公司同意而进行的改装。
- 不完全或者错误的维护与检查。

另本公司负责自身产品的故障维修,但并不负责因产品故障引起的其他损失。

第2章 产品介绍

2.1 产品简介

锐特的 PIO6464-P 是锐特公司开发的一款高性能的 I/O 控制卡,最大支持 64 通用输入,64 通用输出,支持输入口中断功能。输入输出口采用光电隔离技术,可以有效隔离外部电路的干扰,提高系统的可靠性。

2.2 型号说明

产品型号	型号代码	说明
PIO6464-P	Р	P表示脉冲型
	IO	IO 表示是 IO 类型控制卡
	64	表示 64 位通用输入
	64	表示 64 位通用输出
	-P	-P 表示和 PC 的通信方式为 PCI 总线

表 1-1 订货信息

PIO6464-PI/O 卡	I/O 控制卡	PIO6464-P	1
	接线板	PIO0064EB	2
	转接线	SCSI68-2.0M-CN	2
	转接板	PIO6464-PEB-M	1
	排线		1

第3章 硬件连接

3.1 硬件指标

- 工作温度:0℃~50℃;
- 工作湿度: 5~85%, 非结露;
- 贮存温度: -20℃~80℃;

● 电源: 内部芯片电源(由 PCI 总线提供): +5VDC±5%, 最大 900mA;
 外

部接口电源(需用户提供): +24VDC±5%, 最大 500mA;

3.2 输入信号

PIO6464-PI/O控制卡为用户提供了通用数字输入信号,用于开关信号、传感器信号或其它信号的输入。其接口电路加有光电隔离元件,可以有效隔离外部电路的干扰,以提高系统的可靠性。通用数字输入信号接口原理图如图 3-1 所示:

图 3.1 输入原理图

3.3 输出信号

PI06464-P I/O 控制卡为用户提供了通用数字输入信号,由 ULN2803 驱动,

可用于对继电器、电磁阀、信号灯或其它设备的控制。其接口电路都加有光电隔 离元件,可以有效隔离外部电路的干扰,提高了系统的可靠性。

下面给出了通用数字输出信号接口控制 3 种常用元器件的接线图。

3.3.1 发光二极管

通用数字输出端口控制发光二极管时,需要接一限流电阻 R,限制电流在 10mA 左右,电阻需根据使用的电源来选择,电压越高,使用的电阻值越大。接 线图如图 3.2 所示。

图 3.2 输出口接发光二极管

3.3.2 灯丝型指示灯

通用数字输出端口控制灯丝型指示灯时,为提高指示灯的寿命,需要接预热 电阻 R,电阻值的大小,以电阻接上后,输出口为 1 时,灯不亮为原则。接线 图如图 3.3 所示。

图 3.3 输出口接灯丝型指示灯

3.3.3 小型继电器

继电器为感性负载,必须并联一个续流二极管。当继电器突然关断时,继电器中的电感线圈产生的感应电动势可由续流二极管消耗,以免 ULN2803 或 MOS 管被感应电动势击穿。其接线图如图 3.4 所示。

图 3.4 输出口接小型继电器

注意:在使用通用数字输出端口时,切勿把外部电源直接连接至通用数字输出端口上;否则,会损坏输出口。

3.4 各接口及引脚定义

3.4.1 PIO6464-P 接口分布

PIO6464-P 控制卡接口分布如下图 3.5 所示:

图 3.5 PI06464-P 控制卡接口分布

3.4.2 接线板 PIO0064EB 接口定义(J1)

PIO6464-P 运动控制卡前 32 输入 32 输出接口 J1 定义如下表所示:

ルル ビロ	254 0月	日不应该	
22日]	况明	走 2 倍 隔 呙	定义
IN1	通用输入口1	是	INPUTO
IN2	通用输入口 2	是	INPUT1
IN3	通用输入口 3	是	INPUT2
IN4	通用输入口 4	是	INPUT3
IN5	通用输入口 5	是	INPUT4
IN6	通用输入口 6	是	INPUT5
IN7	通用输入口 7	是	INPUT6
IN8	通用输入口 8	是	INPUT7
IN9	通用输入口 9	是	INPUT8
IN10	通用输入口 10	是	INPUT9
IN11	通用输入口 11	是	INPUT10
IN12	通用输入口 12	是	INPUT11
IN13	通用输入口 13	是	INPUT12
IN14	通用输入口 14	是	INPUT13
IN15	通用输入口 15	是	INPUT14
IN16	通用输入口 16	是	INPUT15
IN17	通用输入口 17	是	INPUT16
IN18	通用输入口 18	是	INPUT17
IN19	通用输入口 19	是	INPUT18
IN20	通用输入口 20	是	INPUT19
IN21	通用输入口 21	是	INPUT20
IN22	通用输入口 22	是	INPUT21
IN23	通用输入口 23	是	INPUT22
IN24	通用输入口 24	是	INPUT23
IN25	通用输入口 25	是	INPUT24
IN26	通用输入口 26	是	INPUT25
IN27	通用输入口 27	是	INPUT26
IN28	通用输入口 28	是	INPUT27
IN29	通用输入口 29	是	INPUT28
IN30	通用输入口 30	是	INPUT29
IN31	通用输入口 31	是	INPUT30
IN32	通用输入口 32	是	INPUT31
F24V	外部 24V 电源正输入	, j	
F24V	外部 24V 由源正输入		
E24V	外部 24V 电源正输入		

表 3.1 PI06464-P 接口定义(J1)

E24V	外部 24V 电源正输入		
OUT1	通用输出口1	是	OUTPUT0
OUT2	通用输出口 2	是	OUTPUT1
OUT3	通用输出口 3	是	OUTPUT2
OUT4	通用输出口 4	是	OUTPUT3
OUT5	通用输出口 5	是	OUTPUT4
OUT6	通用输出口 6	是	OUTPUT5
OUT7	通用输出口 7	是	OUTPUT6
OUT8	通用输出口 8	是	OUTPUT7
OUT9	通用输出口 9	是	OUTPUT8
OUT10	通用输出口 10	是	OUTPUT9
OUT11	通用输出口 11	是	OUTPUT10
OUT12	通用输出口 12	是	OUTPUT11
OUT13	通用输出口 13	是	OUTPUT12
OUT14	通用输出口 14	是	OUTPUT13
OUT15	通用输出口 15	是	OUTPUT14
OUT16	通用输出口 16	是	OUTPUT15
OUT17	通用输出口 17	是	OUTPUT16
OUT18	通用输出口 18	是	OUTPUT17
OUT19	通用输出口 19	是	OUTPUT18
OUT20	通用输出口 20	是	OUTPUT19
OUT21	通用输出口 21	是	OUTPUT20
OUT22	通用输出口 22	是	OUTPUT21
OUT23	通用输出口 23	是	OUTPUT22
OUT24	通用输出口 24	是	OUTPUT23
OUT25	通用输出口 25	是	OUTPUT24
OUT26	通用输出口 26	是	OUTPUT25
OUT27	通用输出口 27	是	OUTPUT26
OUT28	通用输出口 28	是	OUTPUT27
OUT29	通用输出口 29	是	OUTPUT28
OUT30	通用输出口 30	是	OUTPUT29
OUT31	通用输出口 31	是	OUTPUT30
OUT32	通用输出口 32	是	OUTPUT31
GND	PC 电源地		
+5V	PC 电源 5V 输出		
EGND	外部 24V 电源负输入		
EGND	外部 24V 电源负输入		

3.4.3 接线板 PIO0064EB 接口定义(X1)

PIO6464-P 运动控制卡后 32 输入 32 输出接口 X1 定义如下表所示:

丝印	说明	是否隔离	定义
IN1	通用输入口1	是	INPUT32
IN2	通用输入口 2	是	INPUT33
IN3	通用输入口 3	是	INPUT34
IN4	通用输入口 4	是	INPUT35
IN5	通用输入口 5	是	INPUT36
IN6	通用输入口 6	是	INPUT37
IN7	通用输入口 7	是	INPUT38
IN8	通用输入口 8	是	INPUT39
IN9	通用输入口 9	是	INPUT40
IN10	通用输入口 10	是	INPUT41
IN11	通用输入口 11	是	INPUT42
IN12	通用输入口 12	是	INPUT43
IN13	通用输入口 13	是	INPUT44
IN14	通用输入口 14	是	INPUT45
IN15	通用输入口 15	是	INPUT46
IN16	通用输入口 16	是	INPUT47
IN17	通用输入口 17	是	INPUT48
IN18	通用输入口 18	是	INPUT49
IN19	通用输入口 19	是	INPUT50
IN20	通用输入口 20	是	INPUT51
IN21	通用输入口 21	是	INPUT52
IN22	通用输入口 22	是	INPUT53
IN23	通用输入口 23	是	INPUT54
IN24	通用输入口 24	是	INPUT55
IN25	通用输入口 25	是	INPUT56
IN26	通用输入口 26	是	INPUT57
IN27	通用输入口 27	是	INPUT58
IN28	通用输入口 28	是	INPUT59
IN29	通用输入口 29	是	INPUT60
IN30	通用输入口 30	是	INPUT61
IN31	通用输入口 31	是	INPUT62
IN32	通用输入口 32	是	INPUT63
E24V	外部 24V 电源正输入		
E24V	外部 24V 电源正输入		
E24V	外部 24V 电源正输入		

表 3.2 PI06464-P 接口定义(X1)

E24V	外部 24V 电源正输入		
OUT1	通用输出口 1	是	OUTPUT32
OUT2	通用输出口 2	是	OUTPUT33
OUT3	通用输出口 3	是	OUTPUT34
OUT4	通用输出口 4	是	OUTPUT35
OUT5	通用输出口 5	是	OUTPUT36
OUT6	通用输出口 6	是	OUTPUT37
OUT7	通用输出口 7	是	OUTPUT38
OUT8	通用输出口 8	是	OUTPUT39
OUT9	通用输出口 9	是	OUTPUT40
OUT10	通用输出口 10	是	OUTPUT41
OUT11	通用输出口 11	是	OUTPUT42
OUT12	通用输出口 12	是	OUTPUT43
OUT13	通用输出口 13	是	OUTPUT44
OUT14	通用输出口 14	是	OUTPUT45
OUT15	通用输出口 15	是	OUTPUT46
OUT16	通用输出口 16	是	OUTPUT47
OUT17	通用输出口 17	是	OUTPUT48
OUT18	通用输出口 18	是	OUTPUT49
OUT19	通用输出口 19	是	OUTPUT50
OUT20	通用输出口 20	是	OUTPUT51
OUT21	通用输出口 21	是	OUTPUT52
OUT22	通用输出口 22	是	OUTPUT53
OUT23	通用输出口 23	是	OUTPUT54
OUT24	通用输出口 24	是	OUTPUT55
OUT25	通用输出口 25	是	OUTPUT56
OUT26	通用输出口 26	是	OUTPUT57
OUT27	通用输出口 27	是	OUTPUT58
OUT28	通用输出口 28	是	OUTPUT59
OUT29	通用输出口 29	是	OUTPUT60
OUT30	通用输出口 30	是	OUTPUT61
OUT31	通用输出口 31	是	OUTPUT62
OUT32	通用输出口 32	是	OUTPUT63
GND	PC 电源地		
+5V	PC 电源 5V 输出		
EGND	外部 24V 电源负输入		
EGND	外部 24V 电源负输入		

3.5 拨码开关设置

PIO6464-P 板卡正面提供了 3 个拨码开关,分别是 S1、S2、S3。如上图 3.5 板卡接口定义所示。

其中 S1 提供控制卡号的拨码,拨码开关四个拨码采用的是 0/1 的二进制编码原理,拨到 ON 则该位为 1,拨到 OFF 则该位为 0。拨码组合对应的卡号如下表所示:

S1-4	S1-3	S1-2	S1-1	控制卡号
保留	OFF	OFF	OFF	0
保留	OFF	OFF	ON	1
保留	OFF	ON	OFF	2
保留	OFF	ON	ON	3
保留	ON	OFF	OFF	4
保留	ON	OFF	ON	5
保留	ON	ON	OFF	6
保留	ON	ON	ON	7

表 3.3 拨码组合对应卡号表

注意: (1)拨码开关 S1 出厂默认设置为全 OFF,即默认卡号设置为 0;当电脑插入多张默认卡号为 0 的卡时会根据靠近 CPU 的顺序自动排序。

(2)除默认卡号0外,当多张卡存在相同的卡号时初始化函数将会返回错误

码

拨码开关 S2 和 S3 能够设置通用输出口的初始电平状态, 拨至 ON 时输出初始电平为低,选择 OFF 时输出初始电平为高。拨码对应的输入口如下表所示:

拨码号	输出口号	高电平	低电平
S3-1	OUT1-OUT8	OFF(出厂设置)	ON
S3-2	OUT9-OUT16	OFF(出厂设置)	ON
S3-3	0UT17-0UT24	OFF(出厂设置)	ON
S3-4	OUT25-OUT32	OFF(出厂设置)	ON

表 3.4 PI06464-P 输出口拨码开关表

S2-1	OUT33-OUT40	OFF(出厂设置)	ON
S2-2	OUT41-OUT48	OFF(出厂设置)	ON
S2-3	0UT49-0UT56	OFF(出厂设置)	ON
S2-4	0UT57-0UT64	OFF(出厂设置)	ON

3.6 硬件安装

在拿到 PIO6464-P 系列运动控制卡之后需要对硬件进行如下检查:

- 板卡主体是否有明显损坏
- 板卡金手指处是否完整,保证能够良好接触

具体安装步骤如下:

- 1) PC 机箱接地并关闭电源
- 2) 根据需求设置板卡拨码
- 3) 将控制卡插入主机机箱中的 PCI 插槽中
- 4) 拧紧螺丝,保证控制卡和 PCI 插槽接触良好稳定
- 5) 将接线板用电缆线与控制卡对应的插座连接,并确保连接牢固可靠。 注意:

(1) 在使用第二个接线板的时候, 需要将 2 个接线板的 5V 和 GND 连接 在一起。

(2) 在拔插控制卡时主机机箱必须完全断电,否则可能造成设备损坏。

(3) 控制卡安装完成后必须拧紧螺丝,否则控制卡的 PCI 接口出现松动会 造成软件运行的错误。

第4章 驱动程序安装

PIO6464-P 系列提供的开发套件中包括 32 位系统的驱动程序和 64 位系统的驱动程序,客户需要根据自身系统位数选择相应的驱动文件进行安装。

我司提供的开发套件文件夹名称使用 **32/64** 来区分不同系统位数的驱动文件。若存在驱动安装问题请与我司技术支持联系,我司将竭诚为您服务。

4.1 Windows10

1) 在将板卡插入计算机后; 鼠标右键单击"计算机"->选择"设备管理器", 在 设备管理器中是否找得到黄色感叹号的" PCI 设备"选项,该设备的详细信 息中 VEN_5254, DEV_5043 代表着该设备的厂商代码和设备代码。如下图所示。

📙 设备管理器	PCI 设备 属性 X	-
文件(F) 操作(A) 查看(V)	常规 驱动程序 详细信息 事件 资源	
V 🗄 SK-HGWJLMKZSAPI	PCI 设备	
> 👕 IDE ATA/ATAPI } > 🔲 处理器	雇性(P)	
> 💼 磁盘驱动器 > 🚍 打印队列	2 後留实例路径 ∨	
> ■ 计算机 > ■ 计算机		
> □□ 键盘 > ■□ 键盘 > ■ 其他设备	PCI/VEIN_3234&DEV_3043&S0B515_00000000&REV_01/4&28478BE9&	
PCI 设备 > → ↓ 人体学输入设备		
> 📄 软件设备 > 🕠 声音、视频和游戏		
> 🕕 鼠标和其他指针设 > 🕴 通用串行总线控制		

图 4.1 设备属性

2) 找到提供的板卡驱动程序,根据系统位数进入相关的驱动安装文件夹; 找到文件"windrvr1200_install";右键以管理员权限运行该批处理文件,安装 成功会以"completed successfully"提示。

	> RT200C > 64	🗟 wdapi1200.dll	2		打开	Enter	150 K
	名称 へ	🚯 wdapi1200_32.dll	•	G	以管理员身份运行		140 K
	🗟 difxapi.dll	🔳 wdreg	2	☆	添加到收藏夹		144 K
	rtdv	🔳 wdreg_gui	2		压缩为 ZIP 文件		144 K
	🔄 RTDV	windrvr1200	2	\\.	复制文件地址	Ctrl+Shift+C	11 K
	RTDV	🗟 windrvr1200	2	B	属性	Alt+Enter	3 K
	🔳 system64	🗟 windrvr1200.sys	2	C7	息云雨多洪顶	chift + E10	295 K
	🗟 wdapi1200.dll	🚯 windrvr1200_install	2	9		311111110	1 K
	🚯 wdapi1200_32.dll	📧 windrvr1200_Uninstall	2	*	0	Û	1 K
	wdreg		F D1		П.,		
	🔳 wdreg_gui	LOG ok: U, RETURN UpdateDri LOG ok: 1, Installation was	successf	igand ul.	rlayDevices.		
≥ windrvr1200 LOG ok: 1, RETURN: DriverPackageI				a11%	(0x0)		
	windrvr1200	LUG ok: I, KEIUKN: DriverPa difx install preinstall in	ckagelnst f: err 0,	allF 1as	A (UXU) st event O, last	error 0. SUCC	ESS
	install: completed successfully 劉 windrvr1200.sys 请按任意键继续,						
	🖲 windrvr1200_install	2022,			-1		
	📧 windrvr1200_Uninstall	2023,					

图 4.2 驱动安装

3)这时再看设备管理器会有一个 WinDriver1200 成功安装的设备

图 4.3 驱动界面

RT200C > 64		
	修改日期	
difxapi.dll	2022/1:	任的根证书颁发机构"存储区。
🖉 rtdv	2022/1	
RTDV	2022/1	
] RTDV	2022/1:	
] systemб4	2022/1	
wdapi1200.dll	2022/1:	颁发给: szruitech.com
wdapi1200_32.dll	2022/1	
wdreg	2022/1	颁发者: szruitech.com
] wdreg_gui	2022/1	有効加以 2022/12/1 列 2080/12/12
windrvr1200	2022/1:	
windrvr1200	2022/1	
windrvr1200.sys	2022/1:	去准证书(1) 《福安表道明(1
windrvr1200 install	2022/1	S 表記 19(1) 加切り 19(1)(1)

4) 找到驱动文件路径下的 RTDV 证书文件

图 4.4 证书

5) 点击安装证书,证书储存位置选择"本地计算机",选择下一页。

欢迎使用证书导入向导

该向导可帮助你将证书、证书信任列表和证书吊销列表从磁盘复制到证书存储。
中证书颁发机物颁发的证书早对你自分的确认 它句今田来保拉数据或建立安全网络连接的信
息。证书存储是保存证书的系统区域。
存储位置
○ 当前用户(C)
●本地计算机(L)
单击"下一步"继续。

【◆下一页(N) Ⅰ

6)在证书储存中选择"将所有的证书都放在下列储存",点击"浏览", 选择"受信任的根证书颁发机构";点击"确定";点击"下一页";直到 成功导入证书。

节存储		(a) (b)		
证书存储是保存证书的系统区域。		此 CA 根目录证书	下受信任。要启用信任,请将该证 9"存储区。	书安装到"
Windows 可以自动选择证书存储,你也可以为证书	指定一个位置。			
○ 根据证书类型,自动选择证书存储(U)		(TTRIAR V	
○ 将所有的证书都放入下列存储(P) 1				
证书存储:		颁发给:		
	浏览	E(R)		
选择证书存储	×	颁发者:		
			确定	
选择要使用的证书存储(C)。				
选择要使用的证书存储(C)。		有效调从 20	22/12/1 🔁 2080/12/12	
选择要使用的证书存储(C)。		有效期从 20	22/12/1 到 2080/12/12	
选择要使用的证书存储(C), □ 个人 □ 受信任的假证书感发机构 □ 企业信任 □ 企业信任	i .	有效期从 20	22/12/1 뛮 2080/12/12	
 选择要使用的证书存储(C), ○ 个人 ○ 受信任的捐证书源发机构 3 ○ 企业信任 -○ 中间正书颁发机构 -○ 受信任的发布者 	1	有效期从 20	22/12/1 到 2080/12/12	
选择要使用的证书存储(C)。 		₩35000000000000000000000000000000000000	22/12/1 🛐 2080/12/12	
 透择要使用的证书存储(C)。 今人 受 后位的假证书颁发机构 全址信任 一 中间证书颁发机构 受 后台的发布者 一 常 后台的证书 一 第三方相证书颁发机构 	 	А БООШИ. 20	22/12/1 到 2080/12/12	

7)在安装完证书之后,找到驱动文件,点击右键"安装",选择"安装设备";成功安装提示"操作成功完成";这是在设备管理器中能够看到设备驱动已经成功安装,能够正常使用。

🗟 difxapi.dll	2022/12/9 17:05	应用程序.
rtdv	2022/12/1 9:29	^{安全目录} : 操作成功完成。2
🔄 RTDV	2022/12/1 9:27	
RTDV	2022/12/1 0.22	今装信息
system64	X (P (A) (B) (D)	用程月 确定
🗟 wdapi1200.dll	■ 打开 Enter	月程月
🗟 wdapi1200_32.dll	該 打开方式	> ^{]]} 文件(F) 操作(A) 查看(V) 帮助(H)
🔳 wdreg	业 安装 1	昭月 🔶 🔿 🛛 🖬 😰 🖬 🛛 😂 🛛 💯
🔳 wdreg_gui	☆ 添加到收藏夹	問程月 ∨ 🚦 SK-HGWJLMKZSAPN
windrvr1200	🚺 压缩为 ZIP 文件	È目 ⁵ → ■ IDE ATA/ATAPI 控制器 V 및 Jungo Connectivity
		a

4.2 Windows7

1) 在将板卡插入计算机后;鼠标右键单击"计算机"->选择"设备管理器",在设备管理器中是否找得到黄色感叹号的"PCI设备"选项,该设备的详细信息中 VEN_5254,DEV_5043 代表着该设备的厂商代码和设备代码。如下图所示。

2) 在驱动文件路径下找到" windrvr1200_install"批处理文件, 然后右键 以管理员身份运行, 在弹出的设备安装提示中选择"安装"。

X00	▶ 驱动 ▶ 64		windrvr1200	2022/12/9 17:05	安装信
† ▼	共享 🔻 新建文件夹		windryr1200_install	2022/12/9 17:05	新新文 Winde
s	名称 ③ difxapi.dll ④ rtdv □ RTDV ④ RTDV	修改日期 2022/12/9 2022/12/1 2022/12/1 2022/12/1 2022/12/1	() windrvr1200_Uninstall	打开(0) 编辑(E) 打印(P) 议管理员身份运行(A) 兼容性疑难解答(Y) 土亨(H)	Windi
	wdapi1200 dll	2022/12/9	Windows 安全		X
	wdapi1200_32.dll	2022/12/9	您想安装这个设备软件吗	?	
	■ wdreg ■ wdreg_gui	2022/12/9 2022/12/9	名称: Jungo Connectiv 发布者: Jungo Connec	vity Jungo Connectivity tivity Ltd.	
	windrvr1200	2022/12/9			
	indrvr1200	2022/12/9			
	🚳 windrvr1200.sys	2022/12/9	 ✓ 始約目11米日 Jungo Conn (A)。 		1) /\\$22((N)
	windrvr1200_install	2022/12/9			
	windrvr1200_Uninstall	2023/2/9 1	🕖 您应仅从可信的发布者安装驱	区动程序软件。我如何确定哪些设备软件	可以安全安装?

3) 在成功安装之后,会打印" completed successfully"等提示,同时 设备管理器中新增 WinDriver1200 设备。

4) 在驱动文件路径下找到 RTDV 证书文件,打开之后点击"安装证书"。

T200X	▶ 驱动 ▶ 64	证书	
Ŧ •	共享 ▼ 新建文件夹	常规 详细信息 证书路径	_
ada	名称 ^	运 员 证书信息	_
aus		此 CA 根目录证书不受信任。要启用信任,请将该证书安装到"受信任的根证书颁发机构"存储区。	
置	RTDV System64		
	🚳 wdapi1200.dll 🚳 wdapi1200_32.dll	颁发给 : szruitech. com	-
	■ wdreg ■ wdreg_gui windryr1200	颁发者 : szruitech.com	
	 windrvr1200 windrvr1200.sys 	有效期从 2022/ 12/ 1 到 2080/ 12/ 12	
	🚳 windrvr1200_install 🚳 windrvr1200_Uninstall	安装证书 α) 颁发者说明 (S	5
G (E:)			
		通知	È

5) 在证书储存页面中,选择"将所有的证书放入下列储存";然后 点击"浏览";选择要使用的证书储存为"受信任的根证书颁发机构"; 点击确定;再点击下一步。

	-	
١Ē	书导入向导	23
	证书存储 证书存储是保存证书的系统区域。	
	Windows 可以自动选择证书存储,或者您可以为证	书指定一个位置。
	◎ 根据证书类型,自动选择证书存储(U)	
	将所有的证书放入下列存储(P) 证书存储:	
		浏览 (B)
	选择证书存储	
	选择要使用的证书存储(C)。	
_	 个人 受信任的根证书颁发机构 ● 企业信任 ● 中级证书颁发机构 ● 受信任的发布者 ● 不信任的证书 	
	□ 显示物理存储区 (S)	8) 下一步 (11) > 取消
	· · · · · · · · · · · · · · · · · · ·	

6) 在点击证书导入向导"完成"之后,出现证书的安全性警告,选择"是"。之后证书导入成功。

1 1 11 025		
安全性警告	i 🔀	1
安全性警告	 您即将从一个声称代表如下的证书颁发机构安装证书: szruitech.com Windows 不能确认证书是否来自 "szruitech.com"。您应该与 "szruitech.com" 联系,以确认证书来源。下列数字将在此过程中对您 有帮助: 指纹 (sha1): 7CEDDEA2 C19261A2 38BBEB7C 958A89CA 53ED996F 警告: 如果安装此根证书,Windows 将自动信任所有此 CA 颁发的证书,安 	1.
	装未经指纹确认的证书有安全风险。如果单击"是",则表示知道此风 险。 您想安装此证书吗?	

7) 在设备管理器中找到黄色感叹号的 PCI 设备;在设备属性中点击 "更新驱动程序"。

管理器	PCI 设备 属性	×
) 操作(A) 查看(V)	常规 驱动程序 详细信息 资源	_
	PCI 设备	
□ IDE ATA/ATAPI 控制	设备类型: 其他设备	
Jungo Connectivity WinDriver1200	制造商: 未知 位置: PCI 总线 4、设备 2、功能 0	
■ 便携设备	□ 设备状态	
■ 处埋器	 该设备的驱动程序未被安装。(代码 28) 没有为设备信息集或元素选择驱动程序。 	
■ 计算机 ■ 监视器	若要查找此设备的驱动程序,请单击"更新驱动程序"。	
🔤 键盘 <u>]</u>]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]	更新驱动程序 (U)	
🚹 802.11 n WLAN		
·····································		
	确定 取消	

8) 选择"浏览计算机以查找驱动程序软件"。

9) 在驱动文件路径中选择驱动文件路径,然后点击"下一步"。

1			×	1
	\bigcirc	① 更新驱动程序软件 - PCI 设备		
0 I IIIII		浏览计算机上的驱动程序文件		
-	Γ	在以下位置搜索驱动程序软件: C:\Users\Administrator\Desktop\RT200X\驱动\64		
		→ 从计算机的设备驱动程序列表中选择(L) 此列表将显示与该设备兼容的已安装的驱动程序软件,以及与该设备处于同一类别下的 所有驱动程序软件。		
		下一步(N)	取消	

10) 在出现的安全提示中选择"始终安装此驱动程序软件"。

	X	修改日期	类型
(子) 📗 更新驱动程序软件 - PCI 设备		5	应用程序扩
正大ウ壮枢动争序标准	😵 Windows 安全		×
止住女表述幼娃净秋叶…	Windows 无法验证此驱动程序软件的发	布者	ŧ
	◆ 不安装此驱动程序软件(N) 应查看制造商的网站,获得设备的更新驱动程序	家件。	扩
	→ 始终安装此驱动程序软件(I) 仅安装来自制造商网站或光盘的驱动程序软件。 损坏您的计算机或窃取信息。	其他来源的未签名软件	可能会
	✓ 查看详细信息(D)		s j

11) 驱动文件成功安装,在设备管理器中出现 RTDV 设备和 WinDriver1200 设备。至此板卡能够正常使用。

1911 最近访问的位置	
📙 设备管理器	
文件(F) 操作(A) 查看(V)	Windows 已经成功地更新驱动程序文件
🧼 🌒 🖬 🗎 🗐 🔽 🗊	
▲ 🛁 WIN-1FCT450K9UV	Windows 已经完成安装此设备的驱动程序软件:
) 🕞 IDE ATA/ATAPI 控	
Jungo Connectivi	RTDV
RTDV	
WinDriver1200	
▷ ; 磁盘驱动器	
▷ 河 端口 (COM 和 LPT	
▷ 1團 计算机	
▷ 🂵 监视器	
▷ @ 键盘	
▲ 🕞 其他设备	
- 🔓 802.11 n WLA	
<u>┣</u> PCI 串行端口	
📠 PCI 简易通讯控	
	关闭(C)
> 🦏 人体学输入设备	

第5章 软件调试

5.1 概述

PIO6464-PI/O 控制卡 Motion 软件是基于 Windows 平台开发的控制卡调试工 具软件,其具有调试控制卡所有功能的能力,操作方便快捷。

用户在使用 VB、VC 或其它高级语言编写应用程序之前,可利用 Motion 软件快速熟悉 PIO6464-P 卡的硬件、软件功能。

5.2 启动与功能描述

控制卡 Motion 软件是一款控制卡辅助调试软件,适用于初次使用锐特控制 卡入门用户或控制卡使用调试查错。

Motion 启动之后会自动扫描电脑中的板卡,当成功开卡之后软件会列出板 卡已有的功能模块如图 5-1 所示:

图 5.1 motion 界面

主要功能如下(注意:以下功能与具体型号控制卡有关,不同类型控制卡可能功能有所不同):

其中使能中断和禁止中断在 Motion 演示软件中默认处理了,当使能中断之后,通用输入口触发时会自动进入回调函数,消息打印栏会打印中断触发的信息。

图 5.2 IO 监控界面

5.3 PIO6464-P 的中断机制

PIO6464-P 的中断触发顺序如下: 首先 I/O 的中断触发板卡的中断, 然后板 卡向上位机提出中断请求, 上位机在合适的时机执行中断服务程序, 对中断进行 处理。

PIO6464-PI/O 卡支持全部输入口中断,同时支持设置中断是由上升沿触发还 是下降沿触发。

要注意的是现在的 PIO6464-PI/O 卡的中断功能默认是关闭的,若需要使用中断功能,需要使能板卡中断以及 I/O 的中断。同时在中断服务程序中必须要加上 清除中断标志的函数,否则可能出现多次触发中断的情况。

开启中断的大致编程过程如下(基于 C#):


```
//中断回调函数(PI06464-P)
```

```
public delegate void PIO6464_OPERATE_FUN(IntPtr userHandle);
```

```
public struct InterruptPrmStruct //给中断服务程序传递参数的结构体(自定义)
```

```
public InterruptPrmStruct(ushort _connectNo, string _cardName)
{ connect_no = _connectNo; cardName = _cardName; }
    public ushort connect_no;
    public string cardName;
```

}

{

```
//中断服务程序,处理中断(自定义)
```

static public void CallBackFunction(IntPtr prm)

{

```
UInt32 iret = 0;
```

//IntPtr 和结构体类型的转换

object obj = Marshal.PtrToStructure(prm, typeof(InterruptPrmStruct)); InterruptPrmStruct prmStruct = (InterruptPrmStruct)obj;

UInt32 intState_L = 0;

//获取 I0 口的中断状态

{

Iret= nRTMC.RTMC.MC_GetPortIntState(prmStruct.connect_no, 0, ref

intState_L);

```
if(iret == 0)
{
    for(ushort i =0;i<32;i++)
    {
        if((((UInt32)0x1<<i)& intState_L) == 0)//确定是 Input I 触发的中</pre>
```

断

//进行相应操作

Console.WriteLine("Interrupt trigger input:" + i+" IntStateL

```
= "+ intState_L.ToString("X"));
```

//清除中断 Bit

nRTMC.RTMC.MC_IntStateBitClean(prmStruct.connect_no, i);

```
}
}
```

//声明委托对象

}

PI06464_OPERATE_FUN functionHandle = new PI06464_OPERATE_FUN(CallBackFunction);

//写在某个函数体内,开启中断使能,指定进入中断处理函数

//创建一个结构体对象,并将结构体对象转为 IntPtr 传参

InterruptPrmStructprmStruct = new InterruptPrmStruct(0, "InterruptTest");

IntPtr structPtr = Marshal.AllocHGlobal(Marshal.SizeOf(prmStruct));

Marshal.StructureToPtr(prmStruct, structPtr, false);

nRTMC.RTMC.MC_SetIntPortMode(0,0, 0xFFFFFFFF, 0xFFFFFFF); //使能中断和设置中断触发

的有效沿,0[~]31

nRTMC.RTMC.MC_SetIntPortMode(0,1,0xFFFFFFF,0xFFFFFFF); //32⁶³ nRTMC.RTMC.MC IoIntEnable(0, functionHandle, structPtr); //使能中断

//关闭中断

nRTMC.RTMC.MC_IoIntDisable(0); //关闭指定板卡的中断

第6章 函数说明

6.1 函数总览

	函数名	说明
	MC_Open	初始化控制卡
	MC_Close	关闭控制卡
	MC_GetTotalAxesAndIONum	获取轴及 IO 口信息
初始化函数	MC_GetTotalAdAndDaNum	获取模拟量信息
	MC_GetControllerVersion	获取控制系统版本信息
	MC_GetProductID	获取控制产品型号
	MC_GetCapComNum	获取捕获及比较数
	MC_GetHandWheelEncNum	获取手轮及编码器数
	MC_GetInIoBit	获取单个输入口的电平
	MC_GetOutIoBit	获取单个输出口的电平
	MC_SetOutloBit	设置单个输出口的电平
	MC_GetInIoPort	获取 32 位输入口电平
	MC_GetOutIoPort	获取 32 位输出口电平
	MC_SetOutIoPort	设置 32 位输出口电平
通用I/O控制函	MC_GetInloPtr	按起始索引和需要读取的数量读
数		取通用输入口的状态
	MC_GetOutloPtr	按起始索引和需要读取的数量读
		取通用输出口的状态
	MC_SetOutIoPtr	按起始索引连续写入多个IO点状
		态
	MC_IoIntEnable	使能 PIO6464 板卡中断
	MC_loIntDisable	禁止 PIO6464 板卡中断

	MC_SetIntBitMode	设置单个输入口中断模式
	MC_GetIntBitMode	获取单个输入口中断模式
中断函数	MC_SetIntPortMode	设置 32 个输入口的中断模式
	MC_GetIntPortMode	获取 32 个输入口的中断模式
	MC_GetPortIntState	获取 32 个输入口的中断状态
	MC_IntStateBitClean	清除某一位的中断状态
	MC_SetInputFilter	设置输入口的滤波值
	MC_GetInputFilter	获取输入口的滤波值

6.2 函数详解

6.2.1 初始化函数

DWORD MC_Open(WORD connect_no,WORD type, char *pconnectstring,W		
ORD* PcieNum	,WORD* PcieIndex);	
开卡函数		
参数	说明	
connect_no	连接号, PCI 连接的情况下默认为 0	
type		
pconnectstrin	连接类型为 ethernet 时通讯的 IP 地址: "192.168.1.2", 其他类	
g	型为空值即可	
PcieNum	返回 PCle 通讯控制器数	
PcieIndex	返回 PCle 通讯控制器	
返回值	错误码	

DWORD MC_Close(WORD connect_no)		
关闭控制器,释放资源		
参数	说明	
connect_no	连接号,成功开卡获得	
返回值	错误码	

DWORD MC_GetTotalAxesAndIONum(WORD connect_no,WORD* total_axes,		
WORD* liner_num	,WORD* total_in_num,WORD* total_out_num, WORD*	
total_pwm_num);		
获取轴及 IO 口信息		
参数	说明	
connect_no	连接号,成功开卡获得	
total_axes	返回轴数	
liner_num	返回插补系数量	
total_in_num	返回通用输入口数量	
total_out_num	返回通用输出口数量	
total_pwm_num	返回 pwm 通道数量	
返回值	错误码	

DWORD MC_GetTotalAdAndDaNum(WORD connect_no,WORD*		
total_ad_num,WORD* total_da_num);		
获取模拟量信息		
参数	说明	
connect_no	连接号,成功开卡获得	
total_ad_num	返回 AD 通道数量	
total_da_num	返回 DA 通道数量	
返回值	错误码	

DWORD MC_GetControllerVersion(WORD connect_no,char* product_type,char		
* soft_version,DW0	DRD* firmware_version,DWORD* dll_version);	
获取控制系统版本信息		
参数	说明	
connect_no	连接号,成功开卡获得	
product_type	返回产品类型,例如"PMC2012"	
soft_version	返回软件版本,例如"pmc_2012_v1.0_soft"	
firmware_version	返回硬件版本,例如"0x01000100"	
dll_version	返回动态库版本,例如"0x10230113"	
返回值	错误码	

DWORD MC_Ge	tProductID(WORD connect_no,DWORD* product_id);	
获取控制产品型号		
参数	说明	
connect_no	连接号,成功开卡获得	
product_id	返回产品 ID	
返回值	错误码	

DWORD MC_GetCapComNum(WORD connect_no,WORD*total_hs_cap_num,		
WORD*total_hs_com_	num,WORD*total_soft_cap_num,WORD*total_soft_com_num,	
WORD* total_2d_hs_c	om_num,WORD* total_2d_soft_com_num);	
获取捕获及比较数		
参数	说明	
connect_no	连接号,成功开卡获得	
total_hs_cap_num	返回硬件捕获通道数量	
total_hs_com_num	返回硬件比较通道数量	
total_soft_cap_num	返回软件捕获通道数量	
total_soft_com_num	返回软件比较通道数量	
返回值	错误码	

DWORD MC_GetHandWheelEncNum(WORD connect_no,WORD*

total_handlewheel_num,WORD* total_enc_num);

获取手轮及编码器数		
参数	说明	
connect_no	连接号,成功开卡获得	
total_handlewheel_num	返回手轮通道数量	
total_enc_num	返回辅助编码器通道数量	
返回值	错误码	

6.2.2 通用 IO 操作相关函数

DWORD MC_GetInIoBit(WORD connect_no, DWORD io_index, byte* IoState);	
按位读取输入口状态	
参数	说明
connect_no	连接号,成功开卡获得
io_index	输入口索引(从0开始)
loState	返回获取到的状态
返回值	错误码

DWORD MC_GetOutloBit(WORD connect_no, DWORD io_index, byte* loStat		
e);		
按位读取通用输出口的状态		
参数	说明	
connect_no	连接号,成功开卡获得	

io_index	输出口的索引(从0开始)
	需要写入的 IO 口状态
loState	0 = 低电平
	1 = 高电平
返回值	错误码

DWORD MC_SetOutIoBit(WORD connect_no, DWORD io_index, byte IoState);	
按位设置输出口的状态	
参数	说明
connect_no	连接号,成功开卡获得
io_index	输出口的索引(从0开始)
	写入输出口的状态;
loState	0 = 低电平
	1 = 高电平
返回值	错误码

DWORD MC_GetInloPort	(WORD connect_no, DWORD port_index, DWORD* I	
oState);		
一次读取 32 位输入口状态		
参数	说明	
connect_no	连接号,成功开卡获得	

port_index	输入口按 32 位分的索引(所要读取的 IO 口索引/32 取
	整)
loState	返回获取到的输入口状态,一次获取 32 位
返回值	错误码

DWORD MC_GetOutIoPort(WORD connect_no, DWORD port_index, DWORD*	
loState);	
获取通用输出口的状态,一次获取 32 位	
参数	说明
connect_no	连接号,成功开卡获得
port_index	输出口按 32 位分的索引, 0 代表前 32 位输出口
loState	需要写入的 32 位输出口状态,位号对应输出口索引
返回值	错误码

DWORD MC_SetOutIoPort(WORD connect_no, DWORD port_index, DWORD	
loState);	
写通用输出口,一次写 32 位	
参数	说明
connect_no	连接号,成功开卡获得
port_index	输出口按 32 位分的索引, 0 代表前 32 位输出口
loState	写入输出口的状态; 32 位数据, 位号代表着相同索引

	的输出口状态
返回值	错误码

DWORD MC_GetInloPtr	WORD connect_no, DWORD start_index, DWORD	
io_num, unsigned long long* loState);		
按照起始地址读取 IO 口状态,最多一次读取 64 点		
参数	说明	
connect_no	连接号,成功开卡获得	
start_index	想要读取的输入口起始索引号	
io_num	想要读取的输入口数量	
loState	返回获取到的输入口状态,根据你的数量按位分布	
返回值	错误码	

DWORD MC_GetOutIoPtr(WORD connect_no, DWORD start_index, DWORD	
io_num, unsigned long long* loState);	
按起始地址获取通用输出口状态,最多一次获取 64 位	
参数	说明
connect_no	连接号,成功开卡获得
start_index	起始索引
io_num	需要读取的数量
loState	获取输出口状态, bit0 状态代表输出口索引为起始索引

	的状态
返回值	错误码

DWORD MC_SetOutIoP	tr(WORD connect_no, DWORD start_index, byte		
loState ,unsigned long lor	IoState ,unsigned long long IoMask);		
根据起始输出口索引,连续	续写多个输出口状态,最多连续写 64 点		
参数	说明		
connect_no	连接号,成功开卡获得		
start_index	起始索引		
	需要写入的 IO 口状态		
loState	0 = 低电平		
	1 = 高电平		
loMask	bit 位为零表示保持原来状态, 为 1 表示写入 loState 状		
IOIVIASK	态		
返回值	错误码		

6.2.3 中断操作相关函数

DWORD	MC_IoIntEnable(WORD	connect_no,	PIO6464_OPERATE_FUN
funcIntHandler, void* pData);			
板卡中断使能			

参数	说明
connect_no	控制卡卡号(范围 0 - N-1,N 为卡数)
funcIntHandler	中断处理函数,传入一个特定函数指针
pData	处理函数需要传入的参数数据,一般以结构体传入
返回值	错误代码

DWORD MC_IoIntDisable(WORD connect_no);	
禁止指定控制卡的中断	
参数	说明
connect_no	控制卡卡号(范围 0 - N-1,N 为卡数)
返回值	错误代码

DWORD MC_SetIntBitMode(WORD connect_no, WORD bitNo, WORD enable,		
WORD logic);		
设置指定控制卡的单个输入口中断使能和触发方式		
参数	说明	
connect_no	控制卡卡号(范围 0 - N-1,N 为卡数)	
bitNo	输入口位号(1 - 64)	
enable	输入口中断使能,0-无效,1-有效	
logic	输入口中断触发逻辑, 0 表示中断信号下降沿有效, 1 表示中断信号上	
	升沿有效	

返回值

错误代码

DWORD N	IC_GetIntBitMode(WORD connect_no, WORD bitNo, WORD*	
enable, WORI	D* logic);	
读取指定控制卡的单个输入口中断使能和触发方式		
参数	说明	
connect_no	控制卡卡号(范围 0 - N-1,N 为卡数)	
bitNo	输入口位号(1 - 64)	
enable	输入口中断使能,0-无效,1-有效	
logic	输入口中断触发逻辑, 0 表示中断信号下降沿有效, 1 表示中断信号上	
	升沿有效	
返回值	错误代码	

DWORD MC_SetIntPortMode(WORD connect_no, WORD m_PortNo, DWORD	
port_en, DWC	RD port_logic);
设置指定控制卡输入端口中断使能状态和触发方式	
参数	说明
connect_no	控制卡卡号(范围 0 - N-1,N 为卡数)
m_PortNo	端口号(范围 0 — 1)
port_en	使能状态设置
	m_PortNo 为 0 时,bit0 – bit31 位值分别代表第 1 – 32 号输入端

	口中断使能状态
	m_PortNo 为 1 时,bit0 – bit31 位值分别代表第 33 – 64 号输入端
	口中断使能状态
port_logic	中断触发逻辑
	0表示中断信号下降沿有效,1表示中断信号上升沿有效
	m_PortNo 为 0 时,bit0 – bit31 位值分别代表第 1 – 32 号输入端
	口中断触发逻辑
	m_PortNo 为 1 时,bit0 – bit31 位值分别代表第 33 – 64 号输入端
	口中断触发逻辑
返回值	错误代码

DWORD	MC_GetIntPortMode(WORD connect_no, WORD m_PortNo,
DWORD* por	t_en, DWORD* port_logic);
获取指定控制-	卡输入端口中断使能状态和触发方式
参数	说明
connect_no	控制卡卡号(范围 0 - N-1,N 为卡数)
m_PortNo	端口号(范围0—1)
port_en	使能状态设置
	m_PortNo 为 0 时,bit0 – bit31 位值分别代表第 1 – 32 号输入端
	口中断使能状态 m_PortNo 为 1 时,bit0 – bit31 位值分别代表
	第33 - 64 号输入端口中断使能状态

port_logic	中断触发逻辑
	0表示中断信号下降沿有效,1表示中断信号上升沿有效
	m_PortNo 为 0 时,bit0 – bit31 位值分别代表第 1 – 32 号输入端
	口中断触发逻辑
	m_PortNo 为 1 时,bit0 – bit31 位值分别代表第 33 – 64 号输入端
	口中断触发逻辑
返回值	错误代码

DWORD MC_GetPortIntState(WORD connect_no, WORD m_PortNo, DWORD*	
interrupt_status);	
读取指定控制卡的	输入口中断状态,一次读 32 位
参数	说明
connect_no	控制卡卡号(范围 0 - N-1,N 为卡数)
m_PortNo	端口号(范围 0 — 1)
interrupt_status	获取到的中断触发状态 0表示中断触发, 1表示中断未触发
	m_PortNo 为 0 时,bit0 – bit31 位值分别代表第 1 – 32 号输入
	端口中断触发状态
	m_PortNo 为 1 时,bit0 – bit31 位值分别代表第 33 – 64 号输
	入端口中断触发状态
返回值	错误代码

DWORD MC	_IntStateBitClean(WORD connect_no, WORD bitNo);
清除某一位的中断标志	
参数	说明
connect_no	控制卡卡号(范围 0 - N-1,N 为卡数)
bitNo	输入口位号 (1-64)
返回值	错误代码

DWORD MC_SetInputFilter(WORD connect_no, DWORD filter);				
设置指定控制卡的输入口滤波				
参数	说明			
connect_no	控制卡卡号(范围 0 - N-1,N 为卡数)			
filter	滤波频率,设置范围 1-100KHz			
返回值	错误代码			

DWORD MC_GetInputFilter(WORD connect_no, DWORD* filter);				
获取指定控制卡的输入口滤波				
参数	说明			
connect_no	控制卡卡号(范围 0 - N-1,N 为卡数)			
filter	滤波频率,设置范围 1-100KHz			
返回值	错误代码			

第7章 附录

7.1 函数返回错误码

错误分类	错误码	描述
	0	函数执行成功
	10001	从卡上读回来的卡号超过最大限制
	10002	从卡上读回来的卡号有重复设置
	10003	参数错误
	10004	不支持这个功能
	10005	连接号没有配置参数
並活供出	10006	固件文件错误
百进 垣 庆 	10007	文件名太长
	10008	产品不存在
	10009	固件文件不匹配
	10010	收到的数据包长度错误
	10011	发送的数据长度超过最大值限制
	10012	输入指针长度,与数据不符合
	10101	输入的轴数超过最大限制
输入错误	10102	输入参数的地址为空指针
	10103	输入参数的 vmove 的方向无效

	10104	输入的卡号超过最大或最小限制
	10105	搜索 EtherNET 时间超时
	10106	输入的输出 IO 数超过最大限制
	10107	输入的输入 IO 数超过最大限制
	10108	输入的控制器 ID 显示在运行中
	10109	仿真模式下,不支持该功能
	10110	坐标系维数错误
	10200	开卡失败,或者开卡不成功
	10201	开卡时打开互斥信号量失败
	10202	开卡时创建共享内存失败
	10203	关卡失败
PCI 相关错误	10204	超过最大传输数据长度
	10205	超过最大卡号限制
	10206	arm 端处理数据超时
	10207	发送数据超时,可能 PCI 的驱动安装不正确
	10208	需要发送的数据长度超过最大长度限制
	10209	读写双口 RAM 的数据
	10210	IO 模块通讯错误
通讯协议相关错 误	801	通讯协议不支持
	802	文件超过最大值
	803	该类文件下载不允许轴运动

	804	文件发送未完成
	805	下载文件类型错误
	806	文件下载数据包代号错误
	807	下载文件的总大小与分包后的总大小错误
	808	文件包的数据异常
	809	spi 的文件数据读写错误
IO 控制相关错误	1501	out 口超过最大值
	1502	in 口超过最大值
	1503	io 映射参数错误
	1504	IO 计数未使能
	1505	fpga 通道为 0~7
	1506	配置的触发后动作不存在
	1507	配置的 IO 类型不存在
	1508	超过最大通道数
日志打印错误码	1701	配置 Log 打印错误